中国股票市场可预测性研究:基于机器学习的视角

  • 172
  • 约 555.94KB
  • 约 21页
  • 2024-03-01 发布
  • 8金币
  • 预览图可能不清晰,实际为下载为清晰文档
股市风险溢价是金融学中的一个经典研究问题.常见的线性模型存在着模型误设和参数不稳定的问题,难以有效预测风险溢价.本研究从机器学习的视角重新检视了中国股票市场的可预测性.基于1996年1月—2019年12月的数据,构建提升回归树(boosting regression trees, BRT)模型对股市收益率与波动率进行样本外预测,并构建了最优风险资产配置模型.实证结果显示:1)提升回归树方法能够对收益率、波动率和最优风险资产权重做出准确预测;2)在收益率预测中最重要的三个变量分别是净权益增加值、换手率和股价方差;挖掘预测变量之间的非线性关系是BRT预测能力的来源;3)结合提升回归树预测构建的最优风险资产组合可以为投资者带来更高的收益和效用.本研究将机器学习方法引入股票市场风险溢价的研究,为此问题的研究提供了全新的视角....

中国股票市场可预测性研究:基于机器学习的视角.pdf

  1. 1、本文档共21页,其中可免费阅读21页,需付费后方可阅读剩余内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。

相关文档

相关热门