基于深度强化学习的自适应股指预测研究

  • 190
  • 约 2.07MB
  • 约 27页
  • 2023-06-16 发布
  • 5金币
  • 预览图可能不清晰,实际为下载为清晰文档
基于股指成分股基本面和技术面数据构建了时序股票关联网络,然后利用深度图神经网络学习股票关联网络层次化表征,以端到端的方式获得候选预测信号.在此基础上,提出了一种考虑动作评估反馈的深度强化学习方法(Action Evaluation Feedback based Deep Q-Learning, AEF-DQN),旨在将不同的候选预测信号融入智能体的动作空间,并基于股票关联网络层次化表征、股票市场整体运行状态和历史动作评估反馈学习环境状态;借鉴前景理论中的参照依赖特性估计奖励值函数,从而建立状态、动作与奖励值之间的映射关系.最后,采用沪深300指数、标普500指数、英国富时100指数和日经225指数的成分股历史数据,构造了股指期货交易模拟器,在投资胜率、最大回撤率、阿尔法比率和夏普比率4个回测指标上对股指预测模型展开实证分析.研究结果表明:1)通过层次化聚合股票关联网络的节点属性信息可以动态捕捉不同行业对股指价格波动的影响,进而可提升预测方法的准确率;2)考虑动作评估反馈的深度强化学习结构可智能化选择适用于当前股票市场环境的最优模型结构,进而可提升预测方法的鲁棒性....

基于深度强化学习的自适应股指预测研究.pdf

  1. 1、本文档共27页,其中可免费阅读27页,需付费后方可阅读剩余内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。

相关文档

相关热门